Development/Tutorials/Kross/Connecting Signals and slots in Kross: Difference between revisions

    From KDE TechBase
    m (Text replace - "<code cpp>" to "<syntaxhighlight lang="cpp">")
    m (Text replace - "<code javascript>" to "<syntaxhighlight lang="javascript">")
    (3 intermediate revisions by the same user not shown)
    Line 46: Line 46:


    #endif
    #endif
    </code>
    </syntaxhighlight>


    === mainwindow.cpp ===
    === mainwindow.cpp ===
    Line 112: Line 112:
       action->trigger();
       action->trigger();
    }
    }
    </code>
    </syntaxhighlight>


    The changes are addition of a text entry field and the reorganisation of logic handling the Kross::Action. Note also that there is no code in mainwindow.cpp to set the label, as there was in the previous tutorial. Instead, Objects are simply made available to the scripting interface through the <tt>action->addObject</tt> calls, without any knowledge of what the script will use them for. This removes the need to know at the time of writing the application what function the scripts will perform, and is therefore suited to a plugin interface.
    The changes are addition of a text entry field and the reorganisation of logic handling the Kross::Action. Note also that there is no code in mainwindow.cpp to set the label, as there was in the previous tutorial. Instead, Objects are simply made available to the scripting interface through the <tt>action->addObject</tt> calls, without any knowledge of what the script will use them for. This removes the need to know at the time of writing the application what function the scripts will perform, and is therefore suited to a plugin interface.
    Line 119: Line 119:
    This script catches the textChanged SIGNAL of the QLineEdit, and connects it to a simple python function to reverse the string in the QLineEdit and display it in the QLabel.
    This script catches the textChanged SIGNAL of the QLineEdit, and connects it to a simple python function to reverse the string in the QLineEdit and display it in the QLabel.


    <code python>
    <syntaxhighlight lang="python">
    #!/usr/bin/env kross
    #!/usr/bin/env kross


    Line 131: Line 131:


    MyInputString.connect("textChanged(const QString &)", reverseString)
    MyInputString.connect("textChanged(const QString &)", reverseString)
    </code>
    </syntaxhighlight>


    === krossSigsSlots.js ===
    === krossSigsSlots.js ===
    This script does the same as the script above but using the JavaScript scripting language.
    This script does the same as the script above but using the JavaScript scripting language.


    <code javascript>
    <syntaxhighlight lang="javascript">
    function reverseString(s){
    function reverseString(s){
         MyLabel.text = s.split("").reverse().join("");
         MyLabel.text = s.split("").reverse().join("");
    Line 143: Line 143:
    connect(MyInputString, "textChanged(const QString &)", this, "reverseString(const QString &)");
    connect(MyInputString, "textChanged(const QString &)", this, "reverseString(const QString &)");


    </code>
    </syntaxhighlight>


    {{TODO|Write similar for other interpreters}}
    {{TODO|Write similar for other interpreters}}
    Line 157: Line 157:
    action->addObject(cmbInterpreters, "MyInterpreter");
    action->addObject(cmbInterpreters, "MyInterpreter");
    action->addObject(lblMessage, "MyLabel");
    action->addObject(lblMessage, "MyLabel");
    </code>
    </syntaxhighlight>
    The <tt>Kross::ChildrenInterface::AutoConnectSignals</tt> argument causes signals of the object to be automatically connected with scripting functions of the same name. Therefore, the scripts can again be simplified:
    The <tt>Kross::ChildrenInterface::AutoConnectSignals</tt> argument causes signals of the object to be automatically connected with scripting functions of the same name. Therefore, the scripts can again be simplified:


    === Simplified scripts ===
    === Simplified scripts ===
    The following python code provides a function that reverses the string:
    The following python code provides a function that reverses the string:
    <code python>
    <syntaxhighlight lang="python">
    import MyLabel
    import MyLabel


    Line 168: Line 168:
       s = s[::-1]
       s = s[::-1]
       MyLabel.text = s
       MyLabel.text = s
    </code>
    </syntaxhighlight>


    Now follows a javascript function that converts the string to [http://en.wikipedia.org/wiki/Pig_Latin pig latin]:
    Now follows a javascript function that converts the string to [http://en.wikipedia.org/wiki/Pig_Latin pig latin]:


    <code javascript>
    <syntaxhighlight lang="javascript">
    function textChanged(text)
    function textChanged(text)
    {
    {
    Line 179: Line 179:
       MyLabel.text = pigLatin;
       MyLabel.text = pigLatin;
    }
    }
    </code>
    </syntaxhighlight>


    {{TODO|Write similar for other interpreters}}
    {{TODO|Write similar for other interpreters}}
    Line 191: Line 191:
    <syntaxhighlight lang="cpp">
    <syntaxhighlight lang="cpp">
       emit signalName();
       emit signalName();
    </code>
    </syntaxhighlight>
    in c++ code. To illustrate this, change the python script to emit the setEnabled(bool) signal of the QCombobox:
    in c++ code. To illustrate this, change the python script to emit the setEnabled(bool) signal of the QCombobox:


    <code python>
    <syntaxhighlight lang="python">
    #!/usr/bin/env kross
    #!/usr/bin/env kross


    Line 207: Line 207:
       s = MyInputString.text[::-1]
       s = MyInputString.text[::-1]
       MyLabel.text = s
       MyLabel.text = s
    </code>
    </syntaxhighlight>


    If 'off' is written in the text field, the setEnabled signal is emitted and the combobox is greyed out. It is not re-enabled again until 'on' is written in the text field.
    If 'off' is written in the text field, the setEnabled signal is emitted and the combobox is greyed out. It is not re-enabled again until 'on' is written in the text field.


    This is a simple demonstration of signal-slot relationships using kross. More complex interfaces may be written to complete a plugin architecture.
    This is a simple demonstration of signal-slot relationships using kross. More complex interfaces may be written to complete a plugin architecture.

    Revision as of 19:47, 29 June 2011

    Hello world in kross
    Tutorial Series   Kross tutorials
    Previous   Kross Hello World
    What's Next   Scripts as plugins
    Further Reading   n/a


    noframe
    noframe
     
    Under Construction
    This page is under construction. This page is actively being developed and updated with new information, and may be incomplete. You can help by editing this page


    This tutorial shows how to use a system of signals and slots to provide a scripting interface for a KDE application. It builds upon the Kross Hello World tutorial and again follows a 'Hello World' type format.

    Update source files

    This tutorial is based on the Hello World tutorial and extends the codebase we wrote there with new functionality.

    mainwindow.h

    First edit the mainwindow.h to handle the changes to mainwindow.cpp. Note that the change is the addition of a private Kross::Action .

    #ifndef MAINWINDOW_H
    #define MAINWINDOW_H
     
    #include <QComboBox>
    #include <QLabel>
    #include <QLineEdit>
    
    #include <kross/core/action.h>
     
    // The main window to display our combobox and the label.
    class MainWindow : public QWidget
    {
        Q_OBJECT
      public:
        // The constructor.
        MainWindow(QWidget *parent=0);
      private Q_SLOTS:
        // This slot is called when the item in the combobox is changed.
        void interpreterActivated(const QString &);
      private:
        QLineEdit* txtInputString;
        QLabel* lblMessage;
        QComboBox* cmbInterpreters;
        // We now have the action as class-member.
        Kross::Action* action;
    };
    
    #endif
    

    mainwindow.cpp

    Using the same CmakeLists.txt and main.cpp from the previous Hello World tutorial, edit the mainwindow.cpp as follows:

    #include "mainwindow.h"
    
    #include <QVBoxLayout>
    #include <QDebug>
    
    #include <kross/core/manager.h>
    #include <kross/core/action.h>
    
    // the constructor.
    MainWindow::MainWindow(QWidget *parent) : QWidget(parent)
    {
      txtInputString = new QLineEdit();
      lblMessage = new QLabel("Hello");
      cmbInterpreters = new QComboBox ();
      cmbInterpreters->addItem("Choose Interpreter", "");
    
      foreach(QString s, Kross::Manager::self().interpreters())
        cmbInterpreters->addItem(s);
    
      connect(cmbInterpreters, SIGNAL(activated(const QString &)),
          SLOT(interpreterActivated(const QString &)));
    
      QVBoxLayout *vLayout = new QVBoxLayout;
      vLayout->addWidget(cmbInterpreters);
      vLayout->addWidget(txtInputString);
      vLayout->addWidget(lblMessage);
      setLayout(vLayout);
    
      // This time we create the Kross::Action already within the
      // constructor and add the objects that should be accessible
      // from within scripting code.
      action = new Kross::Action(this, "MyScript");
    
      action->addObject(txtInputString, "MyInputString");
      action->addObject(cmbInterpreters, "MyInterpreter");
      action->addObject(lblMessage, "MyLabel");
    }
    
    // this slot is called when the active item of the combobox changes.
    void MainWindow::interpreterActivated(const QString &strSelectedInterpreter)
    {
      if(strSelectedInterpreter.isEmpty()) {
        lblMessage->setText("-");
        return;
      }
    
      // this time we are using external script files.
      QString filename;
      if(strSelectedInterpreter == "python")
        filename = "krossSigsSlots.py";
      else if(strSelectedInterpreter == "javascript")
        filename = "krossSigsSlots.js";
      else
        return;
    
      // set the script file that should be executed.
      action->setFile(filename);
      // finally execute the scripting code.
      action->trigger();
    }
    

    The changes are addition of a text entry field and the reorganisation of logic handling the Kross::Action. Note also that there is no code in mainwindow.cpp to set the label, as there was in the previous tutorial. Instead, Objects are simply made available to the scripting interface through the action->addObject calls, without any knowledge of what the script will use them for. This removes the need to know at the time of writing the application what function the scripts will perform, and is therefore suited to a plugin interface.

    krossSigsSlots.py

    This script catches the textChanged SIGNAL of the QLineEdit, and connects it to a simple python function to reverse the string in the QLineEdit and display it in the QLabel.

    #!/usr/bin/env kross
    
    import MyLabel
    import MyInterpreter
    import MyInputString
    
    def reverseString(s):
      s = s[::-1]
      MyLabel.text = s
    
    MyInputString.connect("textChanged(const QString &)", reverseString)
    

    krossSigsSlots.js

    This script does the same as the script above but using the JavaScript scripting language.

    function reverseString(s){
        MyLabel.text = s.split("").reverse().join("");
    }
    
    connect(MyInputString, "textChanged(const QString &)", this, "reverseString(const QString &)");
    
    noframe
    noframe
     
    TODO
    Write similar for other interpreters

    Autoconnecting Signals and Slots

    It is possible to connect signals from your Object to slots in your script file automatically. Edit the mainwindow.cpp file to add another argument to the addObject function:

    action->addObject(txtInputString, "MyInputString",
                      Kross::ChildrenInterface::AutoConnectSignals);
    
    action->addObject(cmbInterpreters, "MyInterpreter");
    action->addObject(lblMessage, "MyLabel");
    

    The Kross::ChildrenInterface::AutoConnectSignals argument causes signals of the object to be automatically connected with scripting functions of the same name. Therefore, the scripts can again be simplified:

    Simplified scripts

    The following python code provides a function that reverses the string:

    import MyLabel
    
    def textChanged(s):
      s = s[::-1]
      MyLabel.text = s
    

    Now follows a javascript function that converts the string to pig latin:

    function textChanged(text)
    {
      text = text.replace(/\b([aeiou][a-z]*)\b/gi, "$1way"); // Rule 2
      pigLatin = text.replace(/\b([bcdfghjklmnpqrstvwxyz]+)([a-z]*)\b/gi, "$2$1ay"); // Rule 1
      MyLabel.text = pigLatin;
    }
    
    noframe
    noframe
     
    TODO
    Write similar for other interpreters

    Emitting signals from within scripts

    So far this tutorial has described connecting signals in c++ objects with slots in scripts. The objects published to kross scripts also make their signals available to the scripts. The signals can then be emitted by calling them. This is equivalent to calling:

      emit signalName();
    

    in c++ code. To illustrate this, change the python script to emit the setEnabled(bool) signal of the QCombobox:

    #!/usr/bin/env kross
    
    import MyLabel
    import MyInterpreter
    
    def textChanged(s):
      if s == "off":
        MyInterpreter.setEnabled(False)
      elif s == "on":
        MyInterpreter.setEnabled(True)
      s = MyInputString.text[::-1]
      MyLabel.text = s
    

    If 'off' is written in the text field, the setEnabled signal is emitted and the combobox is greyed out. It is not re-enabled again until 'on' is written in the text field.

    This is a simple demonstration of signal-slot relationships using kross. More complex interfaces may be written to complete a plugin architecture.