Getting Started/Build/KDE4: Difference between revisions

From KDE TechBase
Line 123: Line 123:


=== What's Happening ===
=== What's Happening ===
First, we go back to the <tt>kde-devel</tt> user's home directory (line 1), get the CMake sources (line 2) and unpack them (line 3). We create a directory to build CMake in (line 4) and go into it (line 5). We then run the CMake boostrap script to set up the CMake build (line 6), then make (line 7) and install it (line 8) using the root user.
First, we go back to the <tt>kde-devel</tt> user's source directory (line 1), get the CMake sources (line 2) and unpack them (line 3). We create a directory to build CMake in (line 4) and go into it (line 5). We then run the CMake boostrap script to set up the CMake build (line 6), then make (line 7) and install it (line 8) using the root user.


If your system does not have the <tt>sudo</tt> command, you can instead do <tt>su -c "make install"</tt>.
If your system does not have the <tt>sudo</tt> command, you can instead do <tt>su -c "make install"</tt>.

Revision as of 23:21, 2 March 2007

Abstract

This tutorial shows one way to get KDE from trunk running on Linux/BSD systems. Throughout the tutorial the bash shell is used. If you are interested in building KDE on other systems such as Solaris, MacOS or Microsoft Windows, please visit the Build page and see the links at the bottom for the respective operating systems.

Note
Expect a higher risk of build failure Monday when critical changes are implemented. Dashboard reports unexpected breakages. You are encouraged to fix failing modules.


Required Software

The following must be installed first before you can successfully complete this tutorial:

  • gcc and g++ from the gcc project, preferably version 4.1 or higher
  • svn, the subversion revision control client
  • pkg-config
  • development libraries and headers for X11
  • development library and headers for libungif

You may also want to have the following installed:

  • bash

Create a user account for KDE4 development

Option 1: Command Line

useradd -m kde-devel or: useradd kde-devel mkdir /home/kde-devel passwd kde-devel chown kde-devel:kde-devel /home/kde-devel 2>/dev/null || \ chown kde-devel:users /home/kde-devel

Option 2: Using KControl

Instead of using the commands above, you can also use the User module in the KDE Control Center if you already have KDE3 installed.

Setting up the environment

Copy the ~/.bashrc from your normal user account to the new kde-devel account. Next, copy and paste the contents of .bashrc into ~kde-devel/.bashrc.

This will provide access to commands such as cmakekde that are used in this tutorial as well as ensure that the proper paths are in place for Qt, KDE and CMake binaries.

For more information, please read the Getting Started/Increased Productivity in KDE4 with Scripts tutorial.

Switching to the New User

Switch to the user kde-devel: (don't forget the dash) su - kde-devel

The rest of this tutorial assumes you are running as the kde-devel user.

The development user's shell

On some systems a new user is configured by default to use /bin/sh. If this is not the case on your system, you can skip this section. Using /bin/sh can be very inconvenient to work with and you may want to change it to /bin/bash or another shell.

Option 1: As the kde-devel user

If you don't have root privileges and your system supports the changing of your own shell with the chsh application, then you could try to change your shell to /bin/bash by using chsh -s /bin/bash your-kde-devel-username.

Option 2: As the root user

If your system comes with the usermod application you can run the following command as root: usermod -s /bin/bash. s Another option is to use the vipw application as root to safely edit your /etc/passwd. Locate 'kde-devel' in the the file. Change '/bin/sh' at the end of the line to read '/bin/bash', save your changes and exit.

The new shell will be started automatically when you log in as the kde-devel user again.

Set up D-Bus

QtDBus and KDE are known to work with D-Bus versions 0.62, as well as 0.92 and upwards. Versions 0.60 and 0.61 may work too but are not tested. Versions 0.90 and 0.91 are known not to work. We recommend using post-1.0 release versions (at least 0.94), so consider upgrading if you haven't done so.

You may skip this section if you have a recent D-Bus version or if you don't want to upgrade.

Before running these steps in the recipe, make sure your X11 headers and libraries are available. The configure script run on line 5 should output:

Building X11 code:        yes

The Recipe

cs wget http://dbus.freedesktop.org/releases/dbus/dbus-1.0.2.tar.gz tar -xvzf dbus-1.0.2.tar.gz cd dbus-1.0.2/ ./configure --prefix=$DBUSDIR --localstatedir=/var make sudo make install sudo dbus-uuidgen --ensure

What's Happening

After changing into the source directory (line 1), D-Bus source code is downloaded from freedesktop.org (line 2) and unpacked (line 3). After going into the newly created D-Bus directory (line 3), the build is set up using the supplied configure script (line 5). After building (line 6) and installing (line 7) D-Bus, we use the dbus-uuidgen tool to install a machine identification file that allows the bus to start automatically when the desktop session starts (line 8).

Note that you need write access to /var for the last two steps. If your system does not have the sudo command, you can use the su command instead, e.g. su -c "make install".

Set up CMake

Skip this if you have CMake >=2.4.5 installed.

The Recipe

cs wget http://www.cmake.org/files/v2.4/cmake-2.4.5.tar.gz tar zxf cmake-2.4.5.tar.gz mkdir cmake-build cd cmake-build ../cmake-2.4.5/bootstrap make sudo make install

What's Happening

First, we go back to the kde-devel user's source directory (line 1), get the CMake sources (line 2) and unpack them (line 3). We create a directory to build CMake in (line 4) and go into it (line 5). We then run the CMake boostrap script to set up the CMake build (line 6), then make (line 7) and install it (line 8) using the root user.

If your system does not have the sudo command, you can instead do su -c "make install".

Set up Qt

Next we need to get the Qt4 that is in KDE's source repository. KDE is guaranteed to build against any Qt 4.2, so you can use your distribution's packaging if you want to. However, we recommend using the copy in the KDE Subversion servers -- especially the patches.

Note that in the future KDE may require a higher version (Qt betas, for instance), so you may as well get your system building with qt-copy now.

The Recipe

cs svn checkout svn://anonsvn.kde.org/home/kde/trunk/qt-copy cd qt-copy ./apply_patches ./configure -qt-gif -no-exceptions -debug -fast \

-prefix $QTDIR -qdbus 

make sub-src sub-tools make install

What's Happening

We switch back to the kde-devel user's souce directory (line 1) and download the source code using subversion (svn) from KDE's repository (line 2). After changing into the resulting qt-copy directory (line 3), we run a script that manages the patches that come with qt-copy (line 4).

Once the patches have been applied, we then set up the build using the configure script (line 5-6). The various command line options used are explained in the qt-copy/README.qt-copy file. Finally, we build the minimal requirements for KDE (line 7) and install (line 8) Qt. If you want all the example and demo applications, you can either build them individually or simly do a make from the qt-copy directory. Note that the installation does not require root as it installs it locally into qt-copy itself.

Troubleshooting

If you get "error: X11/Xlib.h: No such file or directory", install the devel package of xorg (the actual name may vary between operating systems, for example it is xorg-devel on Ubuntu based systems such as Kubuntu).

Set up Strigi

In the next weeks, the code for getting at file metadata will rely on Strigi. It is advisable to install Strigi already to avoid doing it later and to help catch any problems with it. To install Strigi you need the libraries and headers for libz, libbz2 and openssl (libcrypto).

The Recipe

cs svn checkout svn://anonsvn.kde.org/home/kde/trunk/kdesupport/strigi cd strigi cmakekde

What's Happening

We change to the base source directory (line 1). We download the sources for strigi using subversion (line 2), go into the new ~/src/strigi directory (line 3), and commence the build (line 4). This will leave us in the strigi build directory after the build is completed.

Set up kdelibs

Warning
If you have jumped to this section without reading section 3.3 Setting Up The Environment the recipes provided will not work. The recipes are not in error; cs and cb are not typos. You must follow the instructions in section 3.3 for this tutorial to work for you.


With Qt4 built, we can now move on to building KDE's base libraries. If you use the aforementioned .bashrc this is where those new functions come in handy.


The Recipe

cs mkdir KDE && cd KDE svn checkout svn://anonsvn.kde.org/home/kde/trunk/KDE/kdelibs cd kdelibs cmakekde

What's Happening

We change to the base source directory (line 1) then make and go into the KDE directory (line 2). We download the sources for kdelibs using subversion (line 3), go into the new ~/src/KDE/kdelibs directory (line 4), and commence the build (line 5). This will leave us in the kdelibs build directory after the build is completed.

Tip
There might be missing dependencies on your system! They are easily overlooked in the output of cmakekde. You might want to do a cmake ~/src/KDE/MODULE_NAME prior to compiling any kde modules (like kdelibs, kdepimlibs etc.)


Additional KDE-specific CMake modules

There are additional CMake modules in kdelibs/cmake/modules/ that are necessary for building KDE4 applications. These will be installed for you when kdelibs itself is installed.

Troubleshooting

If you have problems compiling kdelibs, first make sure the software in the "Required Software" section above is installed and works. Other possible hints include:

  • If you received an error stating "Please create a separate build directory and run 'cmake path_to_kdelibs [options]' there." then you need to change to your build directory before running cmakekde. (e.g cs KDE/kdelibs && cb && cmakekde)
  • If the problems persist, try the CMake make-option --keep-going.
  • Here you need the libungif library, otherwise you will get an error.

Set up kdepimlibs

After kdelibs, but before kdebase, you need to build and install kdepimlibs.

The Recipe

cs KDE svn checkout svn://anonsvn.kde.org/home/kde/trunk/KDE/kdepimlibs cd kdepimlibs cmakekde

What's Happening

We go into the KDE source directory (line 1), download the source code for kdepimlibs using subversion (line 2) and then go into the new ~/KDE/kdepimlibs directory (line 3). We then commence the build (line 4). This will leave us in the kdepimlibs build directory after the build is completed.

Set up kdebase

You may need kdebase for some kioslaves. cs KDE svn checkout svn://anonsvn.kde.org/home/kde/trunk/KDE/kdebase cd kdebase cmakekde

Troubleshooting

If you have troubles compiling kdebase:

  • Make sure you have the libxss headers installed. (Usually you got undefined references on xscreensaver objects if you haven't those headers)
  • which meinproc has to deliver /home/kde-devel/kde/bin/meinproc
  • if cmakekde cannot find the path of kdepimlibs, edit the file /home/kde-devel/kdebase-build/CMakeCache.txt and manually set KDEPIMLIBS_INCLUDE_DIR:PATH=/home/kde-devel/kdepimlibs-build
  • if you get an error saying "Please set the following variables: X11_XTest_LIB (ADVANCED)", install the devel package of Xtst. On some systems, this is packaged separately from xext and called x11proto-xext-dev or libxtst-dev. You may also need to remove the CMakeCache.txt file in the build dir after installing the package.
  • the same for "X11_Xinerama_LIB (ADVANCED)" where you will need the devel package for xinerama.

Generating local API documentation

Although the API documentation for KDE is available online at api.kde.org, it is sometimes useful to have it on your own disk, for example when you want to use KDevelop for browsing the documentation or when you are not able to be online all the time.

Be aware that generating the API documentation can take several hours and takes almost half a gigabyte of diskspace. The generation is handled by a script in kdelibs/doc/api, you need doxygen to be able to run it.

To build the API documentation for kdelibs, type the following: cs mkdir apidox cs apidox ../kdelibs/doc/api/doxygen.sh ../kdelibs/

Success!

You are now ready to start building other svn modules in the same fashion as you built kdebase, running and testing KDE4 or writing your own patches and applications.

See the Starting a KDE4 Environment and Applications tutorial for how to start working on your new KDE4 installation.